当前位置:主页 > 科技论文 > 机电工程论文 >

机械工程研究生“有限单元法”课程教学探讨

发布时间:2014-07-07 10:55

机械工程专业研究生需要掌握计算机科学等现代科学技术的理论方法,研究各种机械系统、结构及其元件的工作原理、运动和动力学性能、模拟仿真及优化的理论方法,振动与噪声、摩擦、磨损与润滑、传动、创新发明与设论文联盟计及计算方法等。作为一种相对成熟的数值计算方法——有限元方法成为机械工程专业研究生进行机械设计、解决工程实际问题必不可少的工具之一,因而有限单元法普遍列入了研究生的学位课程。同时有限元法是一个庞大和复杂的理论体系,需要有较深厚的数学力学基础知识,学生在一定时间内掌握有限元法比较困难,因此如何提高有限元法教学效果成为一个急需解决的问题。
  一、传统教学方法存在的问题
  教学方式的改革是我国当前高教改革的重要内容之一。在有限元传统的接受式教学模式中,课程的“教”和“学”的内容都是预先设定好的,而且内容多是前人的经验积累;大多数的授课教师在教学过程中往往只注重于传统理论知识的讲解,这在一定程度上不利于启发教学对象的创新性思维。有限元方法作为一门同工程实践联系较强的课程,应该注重培养学生解决实际工程问题的能力,而不仅仅只是局限于理论知识的灌输。只有让学生在自己动手解决实际工程问题的过程中,体验到该课程强大的解决问题的能力和作用,商标注册,才能够激励学生掌握有限元方法的热情,调动学习的主观能动性。因此,要将有限元教学从传统的以教师为主体的教学模式向以学生为主体的教学模式进行转变。在教学过程中,教师的作用更多体现在引导、组织问题的讨论和启发学生的创新性思维。只有提高学生学习的主观能动性,才能够获得更好的教学效果。
  “有限元方法”是在基础力学课程中不断发展而独立出来的一门课程。教师在教学时,应该根据机械工程专业的研究生的培养目标,确定相应教学内容。对机械工程专业研究生来说,该课程教学内容相对多:既包括常见的平面杆系及平面应力、应变问题等二维的有限元分析的基本方法,同时,又包括三维问题的有限元分析和静力学、动力学、线性有限元问题的分析。非线性问题是工程中最为常见的问题,非线性有限元问题的分析应该作为一个教学的重点和难点。在教学过程中应该时刻体现教学目的:不但使学生理解基础的计算理论,而且需要加强解决问题方法和能力的训练,从而使学生在学习该课程后,能够用有限元的方法去解决一些常见的工程问题。传统方法以培养学生的扎实理论知识为目的对学生进行系统的有限元理论知识讲解和分析推导,而对于大多数机械工程专业非力学专业的研究生来说,由于有限元方法的理论知识包含数学、力学、材料力学、弹性力学、变分原理、线性代数、数值计算方法等多门课程的内容,理论起点较高,教学效果不太理想。因此要根据机械工程专业研究生的培养要求,探索适合培养研究生解决实际问题能力的教学方法是十分必要的。
  二、加强基础理论的教学
  基础理论知识的学习是保证良好的教学效果必不可少的。矩阵位移法作为有限元法的课程主线,是最为基础的理论知识。矩阵位移法的基础是线性代数的矩阵运算以及结构力学中学习到的位移法。矩阵位移法理论基础就是加权余量法以及在弹性力学基本原理之一——变分原理。在教学过程中发现,多数学生在基础理论知识方面存在欠缺以及遗忘的情况,因此,在教学过程中应该加强理论知识的补充,将有限元理论的基础知识的教学提高到其应用的重视程度上,才能够保证以后本课程的教学效果。在学习基础理论知识的过程中,应该使学生明白如何将解题的过程采用矩阵的形式进行表达,同时如何利用计算机计算程序来实现。保证足够的教学时间来学习和提高有限元最为基础的础理论知识是很有必要的,在教学的过程中,同时需要注重启发引导和互动,强化学生对所学的基础理论知识的理解和应用,提高学生利用基础理论知识分析问题以及解决问题的能力,从而提高学生学习理论知识的积极性,认识到学习理论知识的作用。
  三、建立有限元分析问题的思想
  有限元法是一种工程实用性非常强的数值分析工具,在有限元方法的学习过程中,建立有限元分析问题的思想是很重要的。简单说就是要明确有限元方法的实质,以及处理问题过程的步骤和注意的问题,在以往的教学中这个问题没有得到相应的重视。
  有限元法最为基础的思想是将复杂问题用相对简单的问题代替后进行求解,在这个过程中,有限元法将求解域划分为许多小的互连子域(称为有限单元),在对单元假定一个相对简单的位移模式,从而得到每一单元近似解,在此基础上推导求解这个域总的平衡方程,最终得到所求问题的解。有限元方法虽然应用的领域很多,但是针对不同物理性质以及数学模型的问题,有限元求解法的基本原理以及步骤大体是相同的,区别仅仅体现于不同物理模型的公式推导和运算求解方法。有限元法的基本步骤通常是相同和固定的:首先确定问题以及定义求解域;其次是将求解域离散化;再此需要确定状态变量和控制方程,通常做法是将微分方程转化为等价泛函形式;推导有限单元的列式,构造单元适合的近似解,得到单元矩阵;最后联立方程组,得到总求解并对结果的合理性进行解释。
  加强学生自己动手利用高级编程语言或者数学工具对某些具体结构的问题进行有限元计算,对培养学生形成有限元分析问题的思想是必不可少的。作为教学的引导者,教师应该提供典型的有限元计算程序,并进行必要的讲解,使学生在这个过程中对有限元分析问题的思想有更进一步的认识。
  四、以实际工程应用为目标增加软件教学
  有限单元法是工程分析中应用最广泛的数值方法之一,世界各国均开发了自己的大型通用有限元计算平台。掌握一种或者多个有限元计算平台是目前拓展有限元应用的重要途径。目前主流的有限元软件主要有:ABAQUS、ANSYS、MSC.MARC、ADINA等。
  为提高学生的实际应用能力,可采用国际上通用的大型有限元软件进行案例教学的方法,有针对性地提炼出工程中典型的结构作为案例,将有限元软件的各种功能及操作贯穿在实际的结构分析中。在每个案例分析中主要侧重模型建立单元网格划分边界条件定义和载荷施加等操作方法的讲解,使学生能够快速、有效地建立起有限元分析的思路,并能够触类旁通。针对不同的工况进行有效地分析,可以使学生掌握有限元软件基本的操作过程以及一些必要的操作技巧。在教学过程中,选用的教学案例应该有针对性,比如对机械工程中常见的结构分析问题,应该包括普通的静态分析;非线性常见的曲屈和失稳接触分析、冲激分析、材料失效和断裂行为等问题分析;动力学分析中的振动模态分析、瞬态动力学问题等。在热分析问题中,应该包括稳态热传导分析以及对流散热分析和热辐射分析等;在多场耦合教学中应包括热力耦合分析等。

本文编号:1108


论文下载
论文发表

本文链接:http://www.bigengculture.com/jixiegongchenglunwen/1108.html

分享