热门搜索: 论文 发表 社科期刊 北大核心 南大核心 cssci 科技期刊 教育

当前位置:主页 > 科技论文 > 电力论文 >

微生物燃料电池不锈钢网阴极制备及产电性能研究

发布时间:2018-01-13 08:42  文章来源:笔耕文化传播

  本文关键词:微生物燃料电池不锈钢网阴极制备及产电性能研究 出处:《哈尔滨工业大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 微生物燃料电池(MFC) 不锈钢网(SSM) 454焦磷酸测序 防水透气膜(WBM) 阴极制作


【摘要】:能源危机和环境污染问题迫使人类急需寻找可持续、可再生的新型清洁能源。另一方面,传统好氧废水处理技术能耗大,不经济,催促人们寻找一种能够合理实现废水处理与资源化的替代技术。微生物燃料电池(MFC)可以借助于微生物实现废水处理,同时可将废水中的化学能转化为清洁的生物质电能,,被认为是一种机遇与挑战并存的新型污水处理工艺。目前,MFC技术主要的瓶颈问题在于如何进一步降低造价以及如何使反应器扩大化,这决定了该技术在未来能否实现工业化。 针对上述瓶颈问题,本文以最为常见的立方体单室空气阴极MFC为研究对象,通过对比碳布(CC)和不锈钢网(SSM)阴极,系统的考察了两种不同反应器在产电性能、处理效率、微生物群落结构等方面的异同;另一方面,借助廉价、实用的SSM和防水透气膜(WBM),对MFC的阴极进行改进并考察其性能,提出了一种较传统方法更为合理的阴极制作方法。本文得到以下主要结果和结论。 将CC和SSM(80目)分别作为阴极基础材料,利用传统方法制作阴极得到两种不同的MFC。SSM-MFC可分别得到32.9和31.3W/m3的最大功率密度,略低于CC-MFC(分别为26.6和24.5W/m3),但两种MFC在处理效率和库伦效率上表现相似。454焦磷酸测序结果显示,在“门”和“纲”分类水平下,两种MFC的阴、阳极微生物群落结构较为相似。在“科”分类水平下,CC-MFC阳极的优势种群为Geobacteraceae(39.5%)和Comamonadaceae(26.0%),SSM-MFC同为Comamonadaceae(45.6%)和Geobacteraceae(20.4%)。这些可认定为疑似胞外产电细菌,虽然阴、阳极间种类相似,但比例不同,这很可能是导致两种MFC产电能力差异的主要因素之一;Comamonadaceae(57.7%)和Rhodocyclaceae(14.0%)是CC-MFC阴极的主要优势种群,而SSM-MFC阴极的主要优势种群是Xanthomonadaceae(49.8%),这种差异很可能来自于阴极基础材料的不同。阴极优势菌群中很可能共同生存着有利和有碍于MFC产电的微生物,它们共同影响着MFC的性能。 以CC为阴极基础、去除Carbon/PTFE层的方式制作阴极,会使功率输出小幅度下降约20%(空气扩散阻力增大、内阻增大等因素),但考虑该涂层制作繁琐,必要时可以去除该层。以SSM(40、60和80目)为基础、WBM为空气扩散层,将催化剂涂抹于SSM上制得SSM/M阴极,运行初期表现良好(40、60和80目SSM对应功率密度27.0、35.4和36.7W/m3),但长期运行产电能力不断下降(40目下降至6.5W/m3)。SSM/M-MFC功率输出随不钢网目数增大而增大,且大于60目后,可超越传统阴极制作方法得到的MFC(CC-MFC为30.0W/m3,SSM-MFC为30.5W/m3)。将催化剂涂抹于WBM上制得SSM/Pt onM阴极,可得到24.7W/m3的功率密度,且长期运行稳定。在SSM/Pt on M基础上去除SSM可以得到Pt on M阴极,其结构更为简单,同样具有长期运行稳定性,但产电能力极差(7.6W/m3),同时阴极结构不够坚固,不易扩大化。综合考虑,SSM/Pt on M阴极相对廉价(约16USD/m2)、简单(节省材料、两步实现)、制作省时(耗时小于0.5h且阴极扩大化后耗时基本不增加),最为合理。因此,本文中我们提出一种基于SSM和WBM、更为可行、实用的MFC空气阴极制作方法。
[Abstract]:Energy crisis and environmental pollution problems forced the human need to find sustainable, new clean renewable energy. On the other hand, the traditional aerobic wastewater treatment technology of high energy consumption, not economic, urging people to find a way to achieve a reasonable alternative technology for wastewater treatment and recycling. The microbial fuel cell (MFC) can be achieved by means of microorganism wastewater at the same time, the chemical in the wastewater can be converted into electrical energy by biomass clean, that is a new wastewater treatment technology which has both opportunities and challenges. At present, the bottleneck problem of MFC technology mainly lies in how to further reduce the cost and how to make the reactor expansion, which determines the technology in the future can realize industrialization.
According to the above problems, based on the most common MFC air cathode single chamber cube as the research object, through the comparison of carbon cloth (CC) and stainless steel (SSM) cathode was investigated in two different reactor processing efficiency in electricity production performance, and similarities and differences between the microbial community structure; on the other hand with cheap, practical, SSM and waterproof breathable membrane (WBM), and to investigate the improvement on the performance of the MFC cathode, presents a more traditional method is more reasonable method of making cathode. This paper obtained the following results and conclusions.
CC and SSM (80 mesh) were used as the cathode materials, using the traditional method of making the cathode get two different MFC.SSM-MFC the maximum power density of 32.9 and 31.3W/m3 respectively, slightly lower than the CC-MFC (26.6 and 24.5W/m3), but the two kinds of MFC in the processing efficiency and the efficiency of Kulun showed a similar.454 pyrosequencing the results showed that in the "door" and "Outline" classification level, two kinds of MFC Yin, anode microbial community structure is similar. In the "branch" classification level, dominant species of CC-MFC anode is Geobacteraceae (39.5%) and Comamonadaceae (26%), SSM-MFC Comamonadaceae (45.6%) and Geobacteraceae (20.4%) these can be identified as a suspected extracellular electrogenic bacteria, while the Yin, the anode type is similar, but the proportion is different, which is likely to lead to two MFC generating capacity difference of one of the main factors; Comamonadaceae (57.7%) and Rhodocycl Aceae (14%) is the main advantage of CC-MFC cathode and SSM-MFC cathode of the population, the dominant population is Xanthomonadaceae (49.8%), the differences are likely to be different from the cathode base material. The cathode bacterium is likely to live together with favorable and hinder the output power of MFC microorganisms, and they affect the performance of MFC.
With CC as the cathode, making the cathode Carbon/PTFE removal layer method, can make the small power output decreased by about 20% (air diffusion resistance increases, increased resistance and other factors, but considering the coating) making complicated, when necessary, can remove the layer. With SSM (40,60 and 80) as a basis for air WBM the diffusion layer, catalyst coated on SSM prepared SSM/M cathode, run at the beginning of good performance (40,60 and 80 SSM corresponding to the power density of 27.0,35.4 and 36.7W/m3), but the long-term operation of electricity production capacity continues to decline (40 orders dropped to 6.5W/m3).SSM/M-MFC power output increased as the steel net mesh size increases, and more than 60 orders after but, beyond the traditional cathode manufacture methods MFC (CC-MFC 30.0W/m3, SSM-MFC 30.5W/m3). The catalyst applied to WBM prepared SSM/Pt onM cathode, 24.7W/m3 power density can be obtained, and the long-term stable operation. In the SSM/Pt on M based on the removal of SSM In order to get the Pt on M cathode, the structure is simple, also has long-term stability, but the electricity production range (7.6W/m3), while the cathode structure is not strong enough, not easy to expand. Considering SSM/Pt on M cathode is relatively inexpensive (about 16USD/m2), simple (saving material, two steps). Making time (time less than 0.5h and the cathode expansion does not increase after consuming), the most reasonable. Therefore, in this paper, we propose a SSM based and WBM, more feasible and practical method of making MFC air cathode.

【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:X703;TM911.45

【引证文献】

相关硕士学位论文 前3条

1 庄汇川;阴极材料对微生物燃料电池性能与微生物群落结构的影响[D];哈尔滨工业大学;2015年

2 高杨;不同阴极条件微生物电化学系统污泥减量产能研究[D];哈尔滨工业大学;2015年

3 房安然;EGSB厌氧氨氧化反应器脱氮及微生物群落结构演替研究[D];哈尔滨工业大学;2015年



本文编号:1418301



    下载步骤:1.微信扫码 2.备注编号 1418301. 3.下载文档

    注:
    1.必须备注编号,否则无法下载;
    2.一般扫码后10分钟左右即可下载,如有问题,点击微信联系客服


    扩展阅读
    1. 微生物燃料电池不锈钢网阴极制备及产电性能研究_CNKI学问
    2. 微生物燃料电池不锈钢网阴极制备和产电性能研究.pdf文档全文免费...
    3. 微生物燃料电池论文:微生物燃料电池阴极材料的制备及其产电..._豆丁
    4. 微生物燃料电池阳极材料的制备及产电性能研究_免费论文范文下载_...
    5. 微生物燃料电池空气阴极催化剂的制备及其产电性能研究_CNKI学问
    6. 微生物燃料池空气阴极催化剂的制备及其产电性能研究.pdf文档全文...
    7. 用于农药废水处理的微生物燃料电池阴极催化剂及其产电性能的研究
    8. 泡沫镍空气阴极微生物燃料电池的产电特性_吴健成_百度文库
    9. 燃料电池_微生物燃料电池制造方法,加工制造- - 阿里巴巴


    本文连接:http://www.bigengculture.com/kejilunwen/dianlilw/1418301.html