热门搜索: 论文 发表 社科期刊 北大核心 南大核心 cssci 科技期刊 教育

当前位置:主页 > 科技论文 > 汽车论文 >

纯电动汽车剩余续驶里程估算研究

发布时间:2019-01-11 09:35  文章来源:笔耕文化传播
【摘要】:目前纯电动汽车剩余续驶里程估算方法较为简单,其估算结果与真实行驶里程存在较大差距,这样直接造成用户时刻担心现有电量不能支持车辆到达预期地点,从而导致“里程焦虑”,降低了用户购买电动汽车的信心。因此,为了提高电动汽车普及率及使用方便性,在一定程度上提高剩余续驶里程估算精度是解决该问题重要方法之一,也是本课题研究的目的,其核心内容如下:(1)基于MATLAB/Simulink建立整车动力学、驾驶员、电机、电池以及整车能耗模型,该模型的建立是为后续章节对剩余续驶里程估算模型仿真作铺垫。(2)详细研究了三种剩余续驶里程估算方法:首先将传统燃油车估算剩余续驶里程方法应用在纯电动汽车上,即平均能耗法,该方法靠获取电池电压、电流来进行能耗计算,比较粗糙;然后引出工况识别法,该方法根据当前行驶工况自动判别当前能耗,且在传统工况识别方法基础上新增下述三点:(1)建立工况特征参数与能耗之间模糊规则库,实现能耗预测。(2)单位能耗行驶里程优化,根据实际经验建立单位能耗与剩余能耗之间的线性关系,使其剩余里程呈递减优化趋势。(3)对输出的剩余续驶里程进行卡尔曼滤波,使其更加真实;最后在工况识别基础上新增工况预测法,该方法将BP神经网络和马尔科夫结合在一起,实现在一定时间范围的工况预测,从而再次提高剩余续驶里程估算精度。(3)因空调对剩余续驶里程影响较大,针对空调的开启与关闭又单独采用了另一种平均能耗估算方案:基于空调功率及开启时间的平均能耗法。(4)为了能详细对比三种方案的效果,分别从已行驶里程和能量消耗两方面进行剩余续驶里程优劣评估,仿真结果验证了工况预测方法的优势。(5)实验论证部分采用快速原型开发平台,首先基于D2P-Motohawk及HIL平台搭建硬件在环仿真测试环境,论证所提出算法模型的可行性及实时性;然后在转鼓实验台进行循环跟踪NEDC工况测试剩余续驶里程;最后通过已行驶里程和能量消耗对比三种方案的优劣性,实验结果表明将工况识别与预测相结合的方法满足实际控制需求,并提高剩余续驶里程估算精度。
[Abstract]:At present, the method of estimating the remaining driving range of pure electric vehicle is relatively simple, and there is a big gap between the estimation result and the real driving mileage, which directly causes the user to worry that the existing electric quantity can not support the vehicle to reach the expected location. This led to "mileage anxiety", reducing the confidence of users to buy electric cars. Therefore, in order to improve the popularity and ease of use of electric vehicles, to a certain extent, improving the estimation accuracy of the remaining driving range is one of the important methods to solve this problem, and is also the purpose of this research. The main contents are as follows: (1) based on MATLAB/Simulink, the vehicle dynamics, driver, motor, battery and vehicle energy consumption model are established. The establishment of the model is to pave the way for the simulation of the residual range estimation model in the following chapters. (2) three methods for estimating the residual continuous mileage are studied in detail: firstly, the traditional fuel vehicle is applied to estimate the residual continued mileage. In pure electric cars, That is, the average energy consumption method, which obtains the battery voltage and current to calculate the energy consumption, is relatively rough; Then the working condition identification method is introduced. The method automatically discriminates the current energy consumption according to the current driving condition, and adds the following three points on the basis of the traditional working condition identification method: (1) establishing the fuzzy rule base between the operating condition characteristic parameters and the energy consumption, (2) Optimization of driving mileage per unit energy consumption. The linear relationship between unit energy consumption and residual energy consumption is established according to practical experience. The residual mileage is reduced and optimized. (3) Kalman filter is applied to the output residual driving mileage to make it more real; Finally, a new condition prediction method is added on the basis of condition recognition. The method combines BP neural network with Markov to realize the condition prediction in a certain time range. Therefore, the estimation accuracy of residual range is improved again. (3) because the air conditioning has a great influence on the residual range, In order to compare the effects of the three schemes in detail, another method of estimating the average energy consumption is used separately: the average energy consumption method based on the air conditioning power and the opening time. (4) in order to compare the effects of the three schemes in detail, The advantages and disadvantages of the remaining driving range are evaluated from the aspects of driving mileage and energy consumption respectively. The simulation results verify the advantages of the working condition prediction method. (5) in the experimental demonstration part, the rapid prototyping development platform is used. Firstly, based on D2P-Motohawk and HIL platform, the hardware in loop test environment is built to demonstrate the feasibility and real-time performance of the proposed algorithm model. Then the remaining driving mileage is measured on the rotary drum test bench by circulating tracking the NEDC working condition. Finally, by comparing the advantages and disadvantages of the three schemes, the experimental results show that the combined method of condition identification and prediction can meet the actual control requirements and improve the estimation accuracy of the remaining driving range.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72

【相似文献】

相关期刊论文 前10条

1 刘旭东;段建民;周大森;冯能莲;;辅助混合动力电动汽车技术研究Ⅵ——续驶里程的仿真及实验[J];北京工业大学学报;2007年07期

2 赵侃;朱聪;曾诚;蔡凤田;杨超;;基于电化学模型的电动公交车续驶里程预测及分析[J];公路交通科技;2013年08期

3 姬芬竹;高峰;周荣;;电动汽车传动系统参数设计和续驶里程研究[J];辽宁工程技术大学学报;2006年03期

4 杜发荣;吴志新;;电动汽车传动系统参数设计和续驶里程研究[J];农业机械学报;2006年11期

5 伍庆龙;冷宏祥;沈延;;电动汽车动力性及续驶里程仿真研究[J];上海汽车;2012年08期

6 吴憩棠;;电动车续驶里程试验方法标准探讨[J];汽车与配件;2009年37期

7 姬芬竹;高峰;吴志新;;电动车传动系和整车质量对续驶里程的影响[J];机械科学与技术;2006年07期

8 唐瑜亮;;纯电动汽车动力性分析和续驶里程研究[J];客车技术与研究;2013年01期

9 车兆华;;插电式混合动力电动城市客车的最佳纯电动模式续驶里程研究[J];客车技术与研究;2013年01期

10 陈勇,孙逢春;电动汽车续驶里程及其影响因素的研究[J];北京理工大学学报;2001年05期

相关会议论文 前4条

1 张翔;;福仕达e纯电动展车开发技术[A];第五届河南省汽车工程科技学术研讨会论文集[C];2008年

2 李久学;;电动汽车专用交流异步电动机[A];第六届河南省汽车工程科技学术研讨会论文集[C];2009年

3 张好明;王应海;;基于复合电源HEV电力驱动系统的研究[A];中国自动化学会控制理论专业委员会D卷[C];2011年

4 何澄源;郁维铭;;电力助动车及其关键配套件技术与市场发展趋势的探讨[A];第七届中国小电机技术研讨会论文集[C];2002年

相关重要报纸文章 前3条

1 本报记者 谭思敏;续驶里程延长:是突破还是炒作? Mileage:Breakthrough or Speculation?[N];机电商报;2009年

2 柯宗;电动汽车续驶里程五年或达300公里[N];科技日报;2013年

3 记者 葛妍 通讯员 郑琨山;我市自主研发电动公交车正式量产[N];南京日报;2010年

相关硕士学位论文 前5条

1 谢明维;纯电动汽车剩余续驶里程估算研究[D];江苏大学;2016年

2 刘伟;电动汽车动力性与续驶里程分析[D];燕山大学;2013年

3 宋媛媛;基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D];北京交通大学;2014年

4 周斌;纯电动汽车动力电池SOC与续驶里程估算研究[D];合肥工业大学;2014年

5 靳莉;电动公交车电池状态与运营匹配关系研究[D];北京交通大学;2011年



本文编号:2406977


论文下载
论文发表
教材专著
专利申请


    下载步骤:1.微信扫码,备注编号 2406977. 2.自助下载


    本文链接:http://www.bigengculture.com/kejilunwen/qiche/2406977.html