热门搜索: 论文 发表 社科期刊 北大核心 南大核心 cssci 科技期刊 教育

当前位置:主页 > 科技论文 > 自动化论文 >

基于图像处理的汽车车道偏离预警系统研究与实现

发布时间:2019-01-10 12:10  文章来源:笔耕文化传播
【摘要】:随着当今社会经济迅速发展,人们生活水平逐渐提高,汽车的数量也飞速增加。而汽车数量的大量增加,使得交通环境日益恶劣,不仅使交通拥堵,还带来越来越多的交通事故。为了减少交通事故的发生,相关研究人员提出了智能交通系统的思想,而车道偏离预警系统是智能交通系统的核心。车道偏离预警系统是一种通过对摄像头采集的道路图像进行检测得到当前车辆位置的信息,如果车辆处于车道偏离的状态则发出预警信号提醒驾驶员安全驾驶的系统。本文通过对现有的国内外车道偏离预警系统进行简单的研究分析,确定了本文的研究内容,主要分为三个模块即图像预处理模块、车道线检测与跟踪模块以及车道偏离预警模块,本论文的主要研究内容和贡献如下:1、对摄像头采集到的原始道路图像进行相应的预处理步骤,主要包括道路图像灰度化、对道路图像进行滤波增强以及道路图像的边缘检测,对比分析几种不同的图像预处理算法,结合道路图像的实际需求选取合适的处理方法,并选取直线模型作为本文的车道线模型,通过分析几种经典的直线检测方法并比较各自的优缺点,选取Hough变换来对道路图像中的车道线进行直线检测。2、在车道线的检测过程中,提出一种Hough变换结合灰度块匹配的车道线检测方法,图像经Hough变换后检测出多条直线,然后利用道路灰度和车道线灰度的明显差异,对其进行灰度块匹配从而在多条直线中确定真正的左右车道线,并利用Kalman滤波对车道线进行实时跟踪。3、对几种经典的车道偏离预警模型简要分析,结合本文的实际情况提出一种基于车道偏离率结合直线数量判断的车道偏离模型,首先根据左右车道线的角度计算车道偏离率,在此基础上增加对检测直线的数量进行判断的条件,从而对车辆当前状态进行准确判断,以达到系统准确预警的功能需求,并对不同场景下的车辆偏离情况进行具体实验分析。通过大量实验及实验结果分析,本文所用的车道线检测方法和车道偏离预警方法效果较好,研究实现的车道偏离预警系统是有效的。
[Abstract]:With the rapid development of social economy, people's living standard is improving gradually, and the number of cars is also increasing rapidly. With the increase of the number of cars, the traffic environment is getting worse and worse, which not only makes the traffic jam, but also brings more traffic accidents. In order to reduce the occurrence of traffic accidents, some researchers put forward the idea of Intelligent Transportation system (its), and the driveway deviation early warning system is the core of its. The lane deviation warning system is a system that detects the current vehicle position by detecting the road image collected by the camera. If the vehicle is in the driveway deviation state, it sends out an early warning signal to remind the driver to drive safely. Through the simple research and analysis of the existing driveway deviation warning system at home and abroad, this paper determines the research content of this paper, which is mainly divided into three modules, that is, image preprocessing module. The main research contents and contributions of this paper are as follows: 1. The corresponding preprocessing steps of the original road image captured by the camera include grayscale road image. The road image is enhanced by filtering and edge detection of road image. Several different image preprocessing algorithms are compared and analyzed. According to the actual needs of road image, the appropriate processing method is selected. The line model is selected as the lane line model in this paper. By analyzing several classical line detection methods and comparing their advantages and disadvantages, Hough transform is selected to detect the lane line in the road image. 2. In the course of lane line detection, a method of lane line detection based on Hough transform and grayscale block matching is proposed. After Hough transform, many straight lines are detected, and then the obvious difference between road gray and lane gray is used. The grayscale block matching is carried out to determine the true left and right lane lines in many straight lines, and the lane line is tracked in real time by using Kalman filter. 3. Several classical lane deviation warning models are briefly analyzed. According to the actual situation of this paper, a lane deviation model based on lane deviation rate combined with the number of straight lines is proposed. Firstly, the lane deviation rate is calculated according to the angle of the left and right lane lines. On this basis, the condition of judging the number of detection lines is added, so that the current state of the vehicle can be accurately judged, so as to meet the functional requirements of accurate warning system, and the deviation of vehicles under different scenes is analyzed through specific experiments. Through a large number of experiments and analysis of experimental results, the lane line detection method and lane deviation warning method used in this paper have a good effect, and the developed lane deviation warning system is effective.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP277

【相似文献】

相关期刊论文 前10条

1 吴晴;田炳香;郑榜贵;;一种用于高速公路的快速有效的车道线识别算法[J];计算机测量与控制;2008年11期

2 田炳香;郑榜贵;吴晴;;高速公路车道线检测与跟踪算法研究[J];现代电子技术;2008年09期

3 叶庆;赵明辉;李菲;孙晓泉;;夜间车道线检测与跟踪算法研究[J];现代电子技术;2009年13期

4 余厚云;张为公;;直线模型下的车道线跟踪与车道偏离检测[J];自动化仪表;2009年11期

5 余厚云;张为公;;基于动态感兴趣区域的车道线识别与跟踪[J];工业仪表与自动化装置;2009年05期

6 刘富强;张姗姗;朱文红;李志鹏;;一种基于视觉的车道线检测与跟踪算法[J];同济大学学报(自然科学版);2010年02期

7 胡庆新;吴林成;顾爱华;;高速公路中搜索车道线的方法[J];微计算机信息;2010年22期

8 高德芝;段建民;杨磊;杨喜宁;;应用多阶动态规划的车道线识别方法[J];机械工程学报;2011年08期

9 杨晶东;杨敬辉;朴松昊;;一种有效的车道线识别与偏道预警方法[J];控制工程;2011年02期

10 徐后杰;李会方;缪国锋;;基于单目视觉的车道线分离警告算法研究[J];微处理机;2011年03期

相关会议论文 前8条

1 毕雁冰;;提高车道线识别精度的一种方法[A];第三届中国CAE工程分析技术年会论文集[C];2007年

2 杨广林;苗冬霜;;结构化道路车道线检测与跟踪算法[A];2005年全国理论计算机科学学术年会论文集[C];2005年

3 刘晓龙;邓志东;;基于全局与局部模型相互制约及具有模型不确定性评估的车道线检测方法[A];2013年中国智能自动化学术会议论文集(第三分册)[C];2013年

4 张洁颖;王生进;丁晓青;;基于车辆轨迹的车道线检测与划分[A];图像图形技术与应用进展——第三届图像图形技术与应用学术会议论文集[C];2008年

5 余贵珍;李芹;王迪;;车辆智能化车道线跟踪方法研究[A];第八届中国智能交通年会优秀论文集——智能交通与安全[C];2013年

6 李钢;圣华;张仁斌;;基于LMedSquare选取最佳子集的车道线检测算法[A];2009全国虚拟仪器大会论文集(二)[C];2009年

7 刘天辉;李飞;;车辆视觉导航中道路检测算法研究[A];第十一届沈阳科学学术年会暨中国汽车产业集聚区发展与合作论坛论文集(信息科学与工程技术分册)[C];2014年

8 孙晓军;李华;;基于Facet模型的一种车道线提取方法[A];第八届中国智能交通年会论文集[C];2013年

相关博士学位论文 前7条

1 杜明芳;基于视觉的自主车道路环境理解技术研究[D];北京理工大学;2015年

2 王俊;无人驾驶车辆环境感知系统关键技术研究[D];中国科学技术大学;2016年

3 穆柯楠;基于车—路视觉协同的行车环境感知方法研究[D];长安大学;2016年

4 王超;面向智能车辆的单目视觉行车安全信息检测与识别方法研究[D];南京理工大学;2016年

5 陈军;基于DSP的高速公路车道偏离报警系统研究[D];天津大学;2010年

6 沈\,

本文编号:2406291


论文下载
论文发表
教材专著
专利申请


    下载步骤:1.微信扫码 2.备注编号 2406291. 3.下载文档
    注:1.必须备注编号,否则无法下载;2.扫码后10分钟即可下载,如有问题,点击微信联系客服。


    本文链接:http://www.bigengculture.com/kejilunwen/zidonghuakongzhilunwen/2406291.html

    上一篇:基于机器视觉的室内人物检测与场景识别  
    下一篇:没有了